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Abstract. The injection of a viscous fluid into a mould formed by two parallel plates is considered. The flow front is
supposed to move at constant speed. It is assumed that there is complete adherence between the fluid and the mould
walls, and that the environmental pressure is constant. For a Newtonian fluid the problem is described in terms of
two analytic complex functions. The shape of the fluid surface is calculated by means of a conformal-mapping
technique, which leads to a Hilbert problem. The results are compared with known finite-element simulations.

1. Introduction

Injection moulding is a process for the manufacture of products of a thermoplastic material.
Before moulding this material is heated beyond its melting point and then injected under
pressure into a mould cavity. In order to achieve complete filling of the cavity, pressure is
maintained during the cooling stage of the process. When the material has solidified and has
attained the mould shape, the product is ejected from the mould.

During the filling stage the fluid surface advances until the mould cavity has been filled
completely. As the shape of the surface is unknown, it is called a free boundary. The flow
directly behind the front resembles the flow of a fountain. Streamlines, initially parallel,
diverge when approaching the flow front. Fluid particles decelerate and move outwards to
the cavity walls. This characteristical flow is therefore referred to as "the fountain effect".
We focus our attention on the free boundary, i.e. the fluid surface. Since it takes some time
until the melting temperature has been reached, solid layers will form at a certain distance of
the flow front. So the effects of cooling and solidification can be neglected and we may
restrict ourselves to the isothermal problem.

A classical problem in injection moulding is the flow of a viscous fluid between two
parallel plates. The solution of this problem also gives a realistic impression of the fountain
flow and of the shape of the fluid surface in the case of a mould of a more general geometry.
We use the model of an incompressible Newtonian fluid. This is a linear, homogeneous,
isotropic fluid, for which the stresses depend linearly on the strain rate. The equations
describing the fluid behaviour are the incompressibility condition, the equilibrium of the
stresses and the constitutive equations. The boundary conditions for the typical geometry of
the fountain flow are determined by the following assumptions. The fluid will fully adhere to
the mould walls, which means that no slip will occur. It is supposed that the fluid surface
advances at a constant speed and that its shape does not alter. The environmental pressure is
assumed to be constant and the effects of surface tension are neglected. In order to complete
the mathematical formulation of the problem we need the condition that the velocity field is
fully developed far behind the flow front. This fully developed velocity field for a Newtonian
fluid is the Poiseuille flow.
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This free-boundary problem has been analysed by Mavridis, Hrymak and Vlachopoulos
[7], who used a finite-element simulation, and by Dierieck [2], who introduced a stream
function to satisfy the incompressibility condition. To determine the shape of the free
boundary both authors use an iterative method involving much numerical effort. For a more
specific treatment of the fountain effect we employ an alternative method of solution based
on the theory of complex functions. The incompressibility condition is satisfied by the
introduction of a stream function and the equations of equilibrium of the stresses are
satisfied by the introduction of a stress function. The constitutive equations relate these two
functions to each other. As a consequence these functions are solutions of the biharmonic
equation. All equations are satisfied by the introduction of two independent analytic
functions. These analytic functions are completely determined by the boundary conditions.
The problem is solved by a conformal-mapping technique leading to a Hilbert problem. This
method of solution is often used in the theory of linear elasticity, e.g. see England [3],
Muskhelishvili [9], and can be applied to the current problem, because the behaviour of an
incompressible Newtonian fluid and of an incompressible linear-elastic (Hookean) material is
governed by essentially the same equations. The theory presented by Muskhelishvili and
England is usually applied to elastic bodies of a shape that is known beforehand. In this
paper we deal with a free-boundary problem, which means that the flow region has an
unknown shape. Nevertheless, the conformal mapping technique can still be used to
calculate the velocity field together with the shape of the free boundary. The theory of
complex functions was also used by Garabedian [4], who derived the solution of several
inverse problems. He prescribed the shape of the free boundary and calculated the velocity
of the fluid for some specific geometries.

2. The fundamental equations

An incompressible Newtonian fluid is injected into the space between two parallel plates at
mutual distance 2h. The flow front moves with a constant velocity Vf relative to the fixed
walls as shown in Fig. 2.1.

The problem will be described in a moving frame of reference defined by

X-Vit y
h ' Y h (2.1)

Fig. 2.1. The fixed frame of reference.
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where X and Y are Cartesian coordinates in a fixed frame and t denotes the time. All
quantities describing the flow are functions of the coordinates x and y only.

Let A and C be the points where the fluid surface makes contact with the walls. The
x-coordinate in the points A and C is chosen to be zero. The plane y = 0 corresponds to the
plane of symmetry. Let B be the point of the surface where y = 0 (see Fig. 2.2). The
y-coordinates of the planes AE and CD are equal to -1 and +1 respectively.

The dimensionless velocity of the fluid relative to the flow front is denoted by

v = u(x, y)e x + v(x, y)ey . (2.2)

The absolute velocity of the fluid relative to the fixed walls is then given by

V= Vf(1 + u(x, y))ex + Vfv(x, y)ey . (2.3)

The stress tensor in the point (x, y) is denoted by T. The dimensionless stress tensor T in
(x, y) is defined by the relation

T= - T, (2.4)
h

where is the viscosity of the fluid.
The constitutive equation for an incompressible Newtonian fluid is

T = -pl + d, (2.5)

where p is the dimensionless hydrostatic pressure and d is the rate of deformation tensor,

d= (L + LT), L= d (2.6)

For an incompressible fluid the conservation of mass yields the incompressibility condition

du do
-du + - =0. (2.7)
dx dy

D C 1

E A 1

Fig. 2.2. The moving frame of reference.
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This equation is satisfied by introducing a stream function A = ¢(x, y),

d=u, v =-v. (2.8)
dy ax

The stresses must satisfy the conservation of momentum. When body forces are absent and
the accelerations can be neglected, we have for two-dimensional flow

t + txyy =0 , t + ty (y = d (2.9)

These equations are satisfied by introducing the Airy stress function b = +(x, y),

txx=- yy, txy = xy, tyy = -x x . (2.10)

Furthermore, the pressure p is related to 4q by

p = -2(tXX + tyy) = 2A = ( xx + Oyy) (2.11)

Because of the analogy between the theory of plane linear elasticity and the two-dimensional
flow problem a description in complex functions as shown by Muskhelishvili [9, Ch. 5] can be
used. Several problems for plane strain and generalized plane stress are treated by England
[3, sec. 2.5]. An application to viscous fluid flow is given by Jacob [6, pp. 316-320]. Follow-
ing these references we introduce the complex variables

z=x+iy and z=x-iy. (2.12)

All equations, including the constitutive relations (2.5), are satisfied by the introduction of
two complex functions fl(z) and w(z) which are analytic in the domain Gz occupied by the
fluid. The general solution of the flow problem is then given by

+ i = iz(z) + (z),

w = u + iv = zl'(z) + w'(z) - fl(z), (2.13)

txx + tyy = -2[1'(z) + fl'(z)],

tx - tyy + 2itxy = 2[zfl"(z) + "(z)] .

The prime ' indicates differentiation with respect to the complex argument. The resulting
force over an arc PQ can also be expressed in the functions l(z) and wo(z), see [3, sec. 2.7],
[9, sec. 33]. Along the arc we have a normal vector n = nxe, + nyey, a tangent vector
s = sxex + syey = -nye x + ney, and the derivatives dz/ds = Sx + isy = i(nx + iny) and
dz/ds = s - isy = -i(n x - iny). For the normal and shear stresses tn and t along the arc PQ
the following holds

t, + it, = (n, Tn) + i(s, Tn) =

= txxn x + 2txynxny + tyyny + i[txxnxS x + ty(nxSy + nySx) + tyynyy] =

= ½ (tx + tyy) + tyy)+ (txx - tyy + 2itxy)(nx - iny) 2 .
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Using (2.13) we derive

dz dz d£
-(tn + its) -S = [I(Z) + i'(Z)] - + [Z7"'(Z) + w"(Z)] -

= ds [f(z) + zf'(z) + co'(z)] .

Integrating over the arc PQ we obtain the following expression for the resulting force:

K =-f (t, + it5 ) dz = [z!F(z) + @'(z) + fl()]p (2.14)

The functions fl(z) and w(z) are completely determined by the boundary conditions. Along
every part of the boundary two conditions are necessary. Along the fluid surface, which is a
free streamline of unknown shape, even three conditions are required.

It is assumed that there is complete adherence between the fluid and the straight walls AE
and CD. This means V= 0 there, or

u= -1, v=O, y= +1. (2.15)

The environmental pressure is a constant denoted by po. Consequently, the normal stress tn
and the shear stress t must satisfy the following conditions along the free boundary ABC:

t = -p, t = 0. (2.16)

These conditions are substituted into the expression (2.14) for the resulting force over an arc
PQ. Taking P fixed and Q in z E ABC we find

K = zfl(z) + o'(z) + fl(z) = Poz + Pt, (2.17)

where p, E C is an integration constant.
The third condition along the fluid surface ABC follows from the assumption that its shape

does not alter. This means that the normal velocity relative to the moving frame must vanish,

(v, n) = 0, (2.18)

where n denotes the outer normal to the surface ABC.
For a complete determination of the mathematical problem conditions at infinity (x - )

are required. At large distance of the flow front the flow will resemble the fully developed
flow, the so-called Poiseuille flow, which will be denoted by an index 0. This type of flow
occurs when the space between the two parallel plates would be completely filled with fluid.
The limiting value of the velocity must be

U_ u0 = 1 - 3y2, Uo_> =O, (x-)-- ) (2.19)

The procedure of solution is to calculate the functions l(z) and w(z) subject to the boundary
conditions (2.15), (2.17), and (2.19), and subsequently to determine the free boundary with
condition (2.18).
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Because of the inhomogeneity of the conditions (2.15) and (2.19) for the velocity it proves
to be convenient to subtract the Poiseuille flow. We write

= + U1 , = V + , and w = u 1 + iv1. (2.20)

The velocities uo and vo are given by (2.19), while u1 and v1 are the new unknown functions.
We replace fl(z) and o (z) by io (Z) + fl1(z) and w 0(z) + Co1(z), respectively, with

4 (z) = - (1 + z2 ) + P2Z, WOo(Z)= 4Z(1 + 2z 2 ), (2.21)

representing the Poiseuille flow and with fll(z) and w1 (z) the new unknown functions. The
constant P2 E R represents a uniform pressure and is still free to be chosen.

From (2.13) and (2.21) we find

wl = z;(z) ) - ll(z) ,

tx + tyy = -2[;1(z) + l(z)] + (Z + ) - 2p 2 , (2.22)

tx - tyy + 2it~y = 2[zfl'(z) + w'(z) - (z - ),

and from (2.14) for the resulting force along an arc PQ,

K= -f (tn +it)dz=

= [zfl(z) + w (z) + fll(z) - (z2 + 2zi - - 2 ) + p2 z]P. (2.23)

The boundary conditions (2.15), (2.17), and (2.19) transform into

wl = zfI(z) + (z)-l(z) = 0, y = -1,

1 = zfl() -+ o(Z) - l(Z)- 0, (x--), (2.24)

K 1 = z(z) + &o(z) + lI(z) = (z 2 + 2z - 2) + (po-P2 )Z + P, z E ABC .

Choosing p2 = po and omitting the irrelevant constant p, we have

K1 = 8 (z + 2zz - 2 ), Z E ABC. (2.25)

3. The conformal mapping

For the solution of the problem described in the preceding section conformal-mapping
techniques will be used. The domain G occupied by the fluid is transformed into the interior
of the unit circle, G := { E CIl; < 1} (see Figs. 3.1 and 3.2).

The mapping function will be denoted by

z = m( ). (3.1)
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D C

B

E A

Fig. 3.1. The domain G,.

This transformation is conformal, implying that the function m( ) is an analytic and
univalent function for ; E G . Further, it is assumed that the mapping function is continu-
ous on G+, except in the point= -1.

The conformal mapping of G + onto Gz exists and is uniquely determined by the choice of
the points B, C, and D on the unit circle. This is a result from the Riemann mapping
theorem. We shall now consider the limit for ; tending to a point f on the boundary of G+ 

I 1 = 1, $ -1. The corresponding point z = m(5 ) will tend to a point of the boundary of
Gz. The limiting value of z is

m+() = lim m() = x(M) + iy() . (3.2)

The complex parameter e is related to the arclength s along the boundary of Gz, e = 6(s) say.
Then, the following relations for the tangential vector s = sxex + syey and the normal vector
n = ne x + nyey along the boundary of Gz exist

dx dy dz, de
s + isy d +i = m'+()

x +iy = s
i d s ds s '

(3.3)

n, + iny = Sy - is x = -im'+() ds '

C

A

Fig. 3.2. The -plane.
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We now eliminate the derivative dlds. Since is on the unit circle, we have

~ = 1. (3.4)

Differentiating (3.4) with respect to the arclength s, we obtain

d + =o. (3.5)

Combining (3.3) and (3.5) we find a relation between the components of the normal vector
and the derivative of the conformal mapping function, reading

-im'+() d m'()n., -+iny ds (m'+()
-- (3.6)

ny- i m'+() d_ m,( )

The relation is not valid in the point E = -1, because this point corresponds to infinity in the
complex z-plane. This point, = -1, is a singular point of the conformal mapping. The
character of this singularity is logarithmic. This implies, that the introduction of branch cuts
from = -1 to = - and along the arc ABC is necessary when the function m( ) is
continuated to the exterior of the unit circle G := { E Cl I I > 1}. Analogous to the theory
of linear elasticity [3, Ch. 5], [9, Ch. 15, 21], we shall approximate the conformal mapping
function m(;) by a polynomial. This technique has been applied successfully to several
problems with given boundaries. Thereby, difficulties caused by branch cuts are avoided.
The basis of this approximation is the Taylor expansion of the mapping function,

m(;)= E /k k 7 < (3.7)
k=O

The radius of convergence of this series is 1. The series is still converging for I = 1 except
in = -1. For reasons of symmetry the coefficients k are real. Truncating the series after
N + 1 terms, we have a polynomial of degree N,

N

mg() = E 9k · (3.8)
k=O

Since the shape of the free boundary ABC is to be determined, the conformal mapping and
its coefficients k are unknown. In the following sections the coefficients k', 0 k < N,
given N, will be calculated such that all conditions are satisfied as well as possible. A
specification of these conditions is given in the last part of Section 5. After the coefficients
are determined, an approximation of the shape of the fluid surface is given by

N
ikO

z = m(e) = /k , k _ , . 0 r. (3.9)
k=O

We assume, that the polynomial mN(C) produces a good approximation of m(;) in the
neighbourhood of the free boundary ABC, for instance in the right half of the interior of the
unit circle D:= { E CI < 1, Re > 0).
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The function mN(g) can be defined not only in the domain G; but also in G . To this
end, the same functional prescription (3.8) is applied. The continuated function mN() is
analytic for all ; E C and branch cuts do not occur. A physical interpretation of mN( ) in the
region G is not possible, because this domain does not correspond with any part of the flow
region.

It has not yet been shown that the function mN() is a conformal mapping, i.e. analytic
and univalent for E G; . Since mN() is a polynomial, it is clearly an analytic function.
The univalence of a conformal mapping is equivalent to the condition that its derivative
doesn't vanish. It is therefore assumed, that the polynomial mN( ) satisfies this condition in
the domain G+. Once the coefficients 11 k have been determined, this assumption must be
verified. Since our main interest lies in the free boundary, it is sufficient that m(g ) doesn't
vanish in the region D C G .

We expect that, with increasing N, the function mN() will produce a better approxima-
tion of the conformal mapping m(;). The domain onto which the interior of the unit circle
G.: is mapped by mN(g) will resemble the domain G, onto which G; is mapped by m(g),
for large N, see [1, Sec. 104] and [5, Ch. 1, Sec. 5, Th. 1-2]. In the following sections an
approximate solution of the flow problem is derived by means of an analytic continuation of
complex functions, in analogy with the Muskhelishvili method in linear elasticity.

4. Transformation of the problem

The flow of the fluid is described by the functions fl (z) and o (z). The complex velocity and
the stresses are expressed in these two functions by the relations (2.22). The functions lp1 (z)
and o0l(z) are completely determined by the boundary conditions (2.24) and (2.25).

The conformal mapping transforms the domain Gz occupied by the fluid into the unit circle
of the complex -plane. Consequently, the velocity and the stresses must be expressed in
the complex variable . To this end, we write

fll(Z) = f1(m())= -Q(), %0(z) = l(m())= -- (;)- (4.1)

The derivatives are given by

fl'(z) = w (z) dz m'() (4.2)

If the conformal mapping m( ) is approximated by a polynomial mN( ), the function f.( )
and Cl(g) must be replaced by 1 N(g) and OwN(g) respectively. It is emphasized that these
two functions are not necessarily polynomials.

The complex velocity and the stresses can now be expressed in the variable ; and in the
complex functions mN(g), fN(g), and wN( ). From (2.22), we find for the approximations

WN = N M 11N(),

t,, + ty= 2[ l(C) + f( ) + 3(mN() + mN()) - 2p, (4.3)

2 m () dm() d -(m( m'( M ) 
t,, - yy + 2i ty m [d,() 

159
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The limiting values of the functions QfN( ) and wN() for < tending to a point on the
boundary of G;, (1 = 1, are denoted by

fN()= lim fN(), ° ()= lim wN(g). (4.4)

The boundary conditions for QN() and OWN( ) on the unit circle follow from (2.24) and
(2.25),

m+(o)l'( )+ a'(d ) +

MN[()fn (N) + +M({[ ) _ () =g EABC, (4.6)

with gN({) defined by

g( ():= ([m()l 2 + 2mN( )mN() - [mG(E)] 2 ), 5 E ABC. (4.7)

The condition (2.18) for the determination of the free boundary can be written as (with w
replaced by wN)

Re[wN(n, - iny)] = 0,

which, with use of (3.6), leads to

Re[wN6m N (()]=0, E ABC, (4.8)

where, in accordance with (2.19) and (2.20),

WN = + -([mN({)2
- 2mN()mn() + [m()] 2) + wN,. (4.9)

The functions fiN(g) and woN() are to be determined from the boundary conditions (4.5)
and (4.6). These equations can be solved by a continuation of flN( ) to the exterior of the
unit circle, G -. This continuation is denoted by TN() and is defined by

rN(), (GEG>,

*N(): = mN(g)11_(1/_) + Wo(1/ I)-- - -- . (4.10)

The function N() is analytic for gE G; and for E G. Once N() is known, the
functions lN() and (oN(g) follow from definition (4.10). For 6 Gc + we have

lN( ) =tN(), (4.11)

(4.12)
I

WNW = MN'(0*10 IC) - MNO -
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Since mN( ) is a polynomial of degree N, the functions mN(1/) and tN(1/I) have poles of
order N in the origin ; = 0. However, wo( ) is an analytic function for ; E G + including the
origin and hence, the right-hand side of equation (4.12) must remain bounded for -->0.
This condition is known as the holomorphy condition (see [3, Sec. 5.4]).

Substitution of (4.10) into the boundary conditions (4.5) and (4.6) yields

TN i( )-q T(N) = 0 ECDEA, (4.13)

T(6) + ( ) )= gN( ) , : E ABC. (4.14)

Expressing the complex velocity WN, in the function TI'N(,), we find

wN = N(1 / e) TN(;) + N ( ; ) -N(1/ ) (4.15)

Since the velocity must remain finite near the points A and C, we have the following
condition

XtN() = O(1), (~-->-+i). (4.16)

From (4.13), we conclude that TN( ) is continuous over the arc CDEA and, therefore, is an
analytic function for E C\ABC. Along the cut ABC the jump condition (4.14) holds and
near the endpoints A and C condition (4.16) must be satisfied. This problem for the function
TN( ) is called a Hilbert problem. Its solution is derived in the next section.

5. The solution of the Hilbert problem

The theory for the solution of Hilbert problems has extensively been treated by Muskhelish-
vili [8] and [9, Ch. 18]. A summary of this theory is given by England [3, Ch. 1]. The
equation (4.14) along the arc ABC and the condition (4.16) near the endpoints A and C
produce the Hilbert problem for the function TN( ). The general solution is given by

TN(;) = X(;)GN() + X()FN(;), 0 E C\ABC, (5.1)

where GN(,) is defined by

2ri Bd , NE C\ABC, (5:2)

while the function X(;) is the characteristic Plemelj function defined by

X(C) = ( - i)2(C + i) /2 , E C\ABC, (5.3)

having a branch cut along the arc ABC. The function FN(C) still has to be determined. The
branch cuts for the roots in the function X(;) are chosen in the following way. The branch
for + i is from -i to -ico along the imaginary axis, so - rr arg( + i) 32rr. The branch
for ; - i is from +i to -i along the arc ABC and from -i to -io along the imaginary axis.

161
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This means that X(0) = -1 and

X(;) = + O(1/0), (-o). (5.4)

As the function X( 5) is continuous across the part of the imaginary axis from -i to - i x, the
branch cut reduces to the arc ABC and X( ) is analytic for ; E C\ABC. Along the arc ABC
one has

x+() + x-(g)=, E ABC. (5.5)

The function GN( ) is analytic for ; E C\ABC and

GN()= 0(1/1), (-- ) (5.6)

With use of the Plemelj formulae for Cauchy integrals (see [8, sec. 17], [9, sec. 68]) we derive

X+(5)G(6)+X -()G(e)=gN(6), EABC. (5.7)

This means that X( )GN() is a particular solution of equation (4.14). From an expansion
of GN() near the endpoints A and C we find (see [8, sec. 29], [9, sec. 110])

X()GN( ) = 0(1), ( -- +i). (5.8)

The function GN( ) can be calculated explicitly in terms of the coefficients Lk, 0 - k - N, by
means of contour integration.

We proceed with the determination of the function FN( ), which is proven to be analytic
for ; EC\ABC only. From (5.1) and (5.7), we conclude that X(C)FN(C) is a homogeneous
solution of equation (4.14), i.e.

X ( )FN( ) +X-( )FN(e)= , E ABC,

and with (5.5) it then follows that

F(5)= F(), EABC. (5.9)

Hence, FN( T) is analytic for E C\{i, -i}.
Due to (4.16) and (5.8),

X(,)FN(C) = 0(1), ( i),
or

F.( ) = O((C ;- i)-1/2), (_-- +i), (5.10)

and, thus, the singularities of FN(C) in = +i are removable. So we conclude that FN() is
an entire function, i.e. analytic for all E C. Since, according to (4.10), I'N(;)= O(CN),
(I I--co), the function FN( ) must be a polynomial of degree N- 1,

N-I

FN()= E fkk , E C. (5.11)
k=O
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For reasons of symmetry the coefficients fk, 0 k - N - 1, are real. These coefficients are
determined by applying the holomorphy condition to (4.12), producing

m~(C)~N(1l)- m/(l/e)N(~) =0(1) (O-). (5.12)

This condition yields N linear equations for the unknown fk, 0 -- k < N - 1.
The functions FN( ) and GN() and, hence, also TN() (see (5.1)) are now entirely

expressed in the coefficients gk, 0 -_ k - N, of the conformal mapping mN( ). Relation (4.8)
gives a criterion for the determination of these coefficients. Since the exact mapping function
m(;) is approximated by a polynomial of degree N, a discrete set of N + 1 equations is
required. First, we impose for geometrical reasons that the point C, ; = i, is mapped onto
z =i in the domain Gz, i.e.

mN(i) = i. (5.13)

The point A, ~ = -i, is then mapped onto z = -i. The real and imaginary parts of (5.13)
yield two equations for the coefficients k, 0 - k - N. The other N - 1 equations are derived
by demanding that the normal velocity vanishes in N - 1 points of the arc ABC. Because of
the symmetry of the problem, we restrict ourselves to the arc BC. On this arc we choose the
points

_Irk

~k=e '°k :2, klk 1 k < N-1 . (5.14)Ok: = 2N '

The coefficients /k, 0 k < N, are now determined by (5.13) and by the conditions

Re[wNfkm N (4k)]=0, 1k<N-1. (5.15)

These equations are solved by a numerical procedure for the solution of systems of
non-linear equations. An approximation of the shape of the free boundary ABC is then
given by the relation (3.9). The results are presented in the final section.

6. Results and conclusions

The approximation of the exact mapping function m(;) by a polynomial mN() of degree N,
see (3.8), and subsequent calculation of the function TN(M), as described in the preceding
section, has been carried out for N = 3, 4, 5, and 6. The results for the coefficients Pk,
0 - k - N, are listed in Table 6.1. Estimates of the errors in the numerical solution of the
equations (5.13) and (5.15) for the coefficients k are also computed. They are in the order
of 10 - 5, if N= 3, 4, 5. Because of the non-linearity of the equations (5.15) for the
coefficients tk,I the numerical procedure for the solution of these equations is slowly
converging when N becomes too large. Nevertheless, the coefficients k can be calculated for
N = 6 with an error of 10 - 3 at most, i.e. less than 1%. For higher values of N convergence is
too slow to produce more than 3-digit accuracy which means an error of 1% at most. On the
other hand, no further improvement of the outcome is observed when N = 7 or 8. So the
results for N = 4, 5, 6 are satisfactory.

As has been said in Section 3, it must be verified that the polynomial mN() is a conformal
mapping, i.e., that the derivative mQ( ) doesn't vanish in the domain G . The total number
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Table 6.1. The coefficients Pik for several values of N

k N=3 N=4 N=5 N=6

0 -0.04287 -0.01699 0.01997 0.125
1 0.98349 0.95126 0.88278 0.689
2 -0.04287 -0.00065 0.07560 0.307
3 -0.01651 -0.04874 -0.12904 -0.368
4 0.01634 0.05563 0.189
5 -0.01182 -0.057
6 0.008

of zeroes of m( ) inside a contour F is given by the integral

r m'() d . (6.1)

Calculation of the integral I with F being the unit circle proves that the function mrN( ) is
conformal for N = 3, 4, and 5. In the case N = 6 the function mrN( ) is conformal in the right
half D of the unit circle. This can be shown by evaluating the integral I with F being the
boundary of the region D.

The shape of the free boundary is calculated from relation (3.9). It appears that the curves
for N = 5 and N = 6 are lying between those for N = 3 and N = 4. So we can say that the
curves are converging to the exact free boundary. The difference between the successive
approximations of the free boundary is about 2-3% of the semi-distance of the two plates.
Since there exists no visual distinction between all the approximations, we confine ourselves
to showing the fluid surface in Figure 6.1 in the case for N = 5 only.

By the equation (4.15) the velocity w is related to the mapping function mN(C) and the
function N(). These two functions can be expressed in the coefficients k and therefore
the velocity w is known when the coefficients are calculated. In Fig. 6.1 streamlines are
drawn in the region behind the flow front. When approaching the front the streamlines
diverge. This typical behaviour is called the fountain effect, as indicated before.

We conclude that the shape of the fluid surface can be calculated by means of a polynomial
approximation of the conformal mapping function which maps the flow region onto the unit
circle. Taking degree N = 4, 5, 6 for the polynomial already produces good results for the
free boundary. These results only differ by 2-3% from those obtained by Dierieck [2] and
Mavridis, Hrymak and Vlachopoulos [7], who used an iterative scheme for the determination
of the free boundary. Numerical efforts involved in such an iteration are avoided in this
paper. Calculations are restricted to the solution of the equations (5.13) and (5.15) for the
coefficients of the conformal mapping function. When these coefficients are computed, the
velocity of the fluid can be calculated in the neighbourhood of the free surface with the
relation (4.15). The characteristical fountain effect of the diverging streamlines is demon-
strated in Fig. 6.1.

The method of complex functions and conformal mapping, which is up to now mostly
utilized to solve problems in mathematical physics with prescribed boundaries, appears to be
just as well useful for solving free-boundary problems in viscous fluid flow. This technique
has also been applied to the die-swell problem for the extrusion of a fluid from a capillary.
This research has been done in cooperation with A.J.M. Sipers. The results are presented in
a companion paper (this Journal 24 (1990) 167-178).
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Fig. 6.1. The free boundary.
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